Đạo hàm hàm số đường cong
From Wikiversity
Jump to navigation
Jump to search
Đạo hàm hàm số đường cong
Hàm số đường cong e
x
thuận
Đạo hàm hàm số
sinh
x
{\displaystyle \sinh x}
cosh
x
=
e
x
+
e
−
x
2
{\displaystyle \cosh x={\frac {e^{x}+e^{-x}}{2}}}
cosh
x
{\displaystyle \cosh x}
sinh
x
=
e
x
−
e
−
x
2
{\displaystyle \sinh x={\frac {e^{x}-e^{-x}}{2}}}
tanh
x
{\displaystyle \tanh x}
sech
2
x
{\displaystyle {\operatorname {sech} ^{2}\,x}}
sech
x
{\displaystyle \operatorname {sech} \,x}
−
tanh
x
sech
x
{\displaystyle -\tanh x\,\operatorname {sech} \,x}
csch
x
{\displaystyle \operatorname {csch} \,x}
−
coth
x
csch
x
{\displaystyle -\,\operatorname {coth} \,x\,\operatorname {csch} \,x}
coth
x
{\displaystyle \operatorname {coth} \,x}
−
csch
2
x
{\displaystyle -\,\operatorname {csch} ^{2}\,x}
Đạo hàm hàm số đường cong nghich
Hàm số đường cong e
x
nghịch
Đạo hàm của hàm số
arsinh
x
{\displaystyle \operatorname {arsinh} \,x}
1
x
2
+
1
{\displaystyle {1 \over {\sqrt {x^{2}+1}}}}
arcosh
x
{\displaystyle \operatorname {arcosh} \,x}
1
x
2
−
1
{\displaystyle {\frac {1}{\sqrt {x^{2}-1}}}}
artanh
x
{\displaystyle \operatorname {artanh} \,x}
1
1
−
x
2
{\displaystyle {1 \over 1-x^{2}}}
arsech
x
{\displaystyle \operatorname {arsech} \,x}
−
1
x
1
−
x
2
{\displaystyle -{1 \over x{\sqrt {1-x^{2}}}}}
arcsch
x
{\displaystyle \operatorname {arcsch} \,x}
−
1
|
x
|
1
+
x
2
{\displaystyle -{1 \over |x|{\sqrt {1+x^{2}}}}}
arcoth
x
{\displaystyle \operatorname {arcoth} \,x}
1
1
−
x
2
{\displaystyle {1 \over 1-x^{2}}}
Category
:
Đạo hàm
Hidden category:
VI
Navigation menu
Personal tools
English
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
View history
More
Navigation
Main Page
Community Portal
Babel user information
Root Category
Recent changes
States of WikiU
Help
Donate
Tools
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Print/export
Create a book
Download as PDF
Printable version