Jump to content

სამკუთხედის პერიმეტრი, მასთან დაკავშირებული მონაკვეთები, წერტილები და წრეწირები

From Wikiversity

პერიმეტრი

[edit]

სამკუთხედის პერიმეტრი ეწოდება მისი გვერდების სიგრძეთა ჯამს. ABC სამკუთხედისთვის P-თი აღნიშნავენ: P=AB+BC+AC. საჭიროებისამებრ, p-თი აღნიშნავენ ნახევარპერიმეტრს:

აღსანიშნავია, რომ მსგავსი სამკუთხედების პერიმეტრების შეფარდება მსგავსების კოეფიციენტის ტოლია — მსგავსი სამკუთხედების პერიმეტრები ისე შეეფარდება, როგორც შესაბამისი გვერდები.

ბისექტრისა

[edit]

frame|right|სამკუთხედის სამივე ბისექტრისა ერთ წერტილში იკვეთება და ეს წერტილი ამ სამკუთხედში ჩახაზული წრეწირის ცენტრია სამკუთხედის შიგა კუთხის ბისექტრისის მონაკვეთს კუთხის წვეროდან მის მოპირდაპირე გვერდამდე სამკუთხედის ბისექტრისა ეწოდება. ნებისმიერი სამკუთხედის სამივე ბისექტრისა ერთ წერტილში იკვეთება, რომელიც ყოველთვის სამკუთხედის შიგნით მდებარეობს. სამკუთხედის ბისექტისათა გადაკვეთის წერტილი ამ სამკუთხედში ჩახაზული წრეწირის ცენტრია.

სიმაღლე

[edit]

სამკუთხედის სამივე სიმაღლის შემცველი წრფეები ერთ წერტილში იკვეთება.სამკუთხედის სიმაღლე ეწოდება მონაკვეთს, რომელიც სამკუთხედის ნებისმიერ წვეროს აერთებს მის მოპირდაპირე გვერდათან ან მოპირდაპირე გვერდის გაგრძელებასთან და მისი მართობულია. სამკუთხედის სამივე სიმაღლის შემცველი წრფეები ერთ წერტილში იკვეთება და ეს წერტილი:

  • მახვილკუთხა სამკუთხედში სამკუთხედის შიგნითაა.
  • მართკუთხა სამკუთხედში მართი კუთხის წვეროა.
  • ბლაგვკუთხა სამკუთხედში სამკუთხედის გარეთაა.

ტოლფერდა სამკუთხედში ფუძეზე დაშვებული სიმაღლე ამავდროულად მედიანაცაა და ბისექტრისაც. ტოლგვერდა სამკუთხედის ყველა სიმაღლე მედიანაცაა და ბისექტრისაც. აქედან გამომდინარეობს, რომ მართკუთხა სამკუთხედში 30°-იანი კუთხის მოპირდაპირე კათეტი ჰიპოტენუზის ნახევარია.

შემოხაზული წრეწირი

[edit]

frame|left|სამკუთხედზე შემოხაზული წრეწირის ცენტრი მისი გვერდების შუამართობების გადაკვეთის წერტილია. წრეწირს, რომელიც მოცემული სამკუთხედის სამივე წვეროზე გადის, სამკუთხედზე შემოხაზული წრეწირი ეწოდება, თავად სამკუთხედს კი — წრეწირში ჩახაზული სამკუთხედი. სამკუთხედის სამივე გვერდის შუამართობები ერთ წერტილში იკვეთება და ეს წერტილი სამკუთხედზე შემოხაზული წრეწირის ცენტრია. სიბრტყეზე განლაგებულ ნებისმიერ სამკუთხედზეა შესაძლებელი წრეწირის შემოხაზვა. სამკუთხედზე შემოხაზული წრეწირის დიამეტრი ამ სამკუთხედის ერთ-ერთი გვერდისა და ამ გვერდის მოპირდაპირე კუთხის სინუსის შეფარდების ტოლია. აგრეთვე, თუ სამკუთხედის გვერდებია a, b და с, ფართობი — S, მასზე შემოხაზული წრეწირის რადიუსი კი — R,

მართკუთხა სამკუთხედზე შემოხაზული წრეწირის რადიუსი ჰიპოტენუზის ნახევარია, მისი ცენტრი კი — ჰიპოტენუზის შუაწერტილი. ტოლგვერდა სამკუთხედზე შემოხაზული წრეწირის რადიუსი გამოითვლება ფორმულით

სადაც a ამ სამკუთხედის გვერდია, R — მასზე შემოხაზული წრეწირის რადიუსი.

ჩახაზული წრეწირი

[edit]

frame|right|სამკუთხედში ჩახაზული წრეწირის ცენტრი მისი ბისექტრისების გადაკვეთის წერტილია. წრეწირს, რომელიც მოცემული სამკუთხედის სამივე გვერდს ეხება, სამკუთხედში ჩახაზული წრეწირი ეწოდება, თავად სამკუთხედს კი — წრეწირზე შემოხაზული სამკუთხედი. სამკუთხედის სამივე ბისექტრისა ერთ წერტილში იკვეთება და ეს წერტილი სამკუთხედში ჩახაზული წრეწირის ცენტრია. სიბრტყეზე განლაგებულ ნებისმიერ სამკუთხედში შეიძლება წრეწირის ჩახაზვა. სამკუთხედში ჩახაზული წრეწირის რადიუსი ამ სამკუთხედის ფართობისა და ნახევარპერიმეტრის შეფარდების ტოლია. ანუ, თუ სამკუთხედის ნახევარპერიმეტრია p, ფართობი — S, მასში ჩახაზული წრეწირის რადიუსის სიგრძე კი — r,

თუ მართკუთხა სამკუთხედის კათეტების სიგრძეებია a და b, ჰიპოტენუზისა კი — c, ჩახაზული წრეწირის რადიუსის სიგრძე იქნება

ტოლგვერდა სამკუთხედში ჩახაზული წრეწირის რადიუსი გამოითვლება ფორმულით

სადაც a ამ სამკუთხედის გვერდის სიგრძეა, r — მასში ჩახაზული წრეწირის რადიუსის სიგრძე.