Functional programming -- 2008-2009 -- info.uvt.ro/Laboratory 1

From Wikiversity
Jump to navigation Jump to search


Lambda lc.svg

Functional programming (Spring 2010):

Optional (but highly recommended) reading[edit]

The following essays are stolen from Shriram Krishnamurthi:

References[edit]

From the book Practical Common Lisp:

Overview[edit]

Concepts
Languages

Tools[edit]

GNU CLISP
PuTTY
  • SSH client for remote access to the university's server goliat.info.uvt.ro;
  • PuTTY -- official site;
  • PuTTY Win32 package;
SciTE
  • Lisp aware text editor for Windows;
  • SciTE -- official site;

Basic expressions[edit]

Numbers
3.14
20
1/3
55.2e-20
Symbols
abc
function-1
min-max
1+
2pi
<<
>>
string->
Strings
 "abc"
 "123CDE"
Lists
(1 2)
(1 (2 3) (4 (5 6)) 7)
(1 abc 2 cde)
("abc" 1 (33 "4"))
()
(1 () a)
(() ())
Comments
; this is a comment
(print "hello") ; this in another comment

Basic operations[edit]

Arithmetic expressions
  • +, -, *, /, mod, rem:
(+ 1 2 3 4) ; => 10
(- 1 2 3 4) ; => -9
(* 1 2 3 4) ; => 24
(/ 1 2 3 4) ; => 1/24
(mod 7 3) ; => 1
(rem 7 3) ; => 1
  • 1+, 1-:
 (1+ 2) ; => 3
 (1- 2) ; => 1
  • min, max:
(min 1 2 3) ; => 1
(max 1/2 2 33/5) ; => 33/5
  • abs, floor, ceiling, trucncate, round:
(abs -2.3) ; => 2.3
(floor 1/2) ; => 1
(truncate 1/2) ; => 1
(ceiling 1/2) ; => 2
(round 1.5) ; => 2
(round 2.5) ; => 2
  • sqrt, exp, expt, log:
(sqrt 1/4) ; => 1/2
(exp 2) ; => 7.389056
(expt 5/3 2) ; => 25/9
(log (exp 2)) ; => 2
  • signum:
(signum -55) ; => -1
(signum -55/3) ; => -1
(signum -55.0) ; => -1.0
  • sin, cos, tan:
(sin (/ pi 2)) ; => 0.707106...
Arithmetic predicates
  • zerop, plusp, minusp:
(zerop 0) ; => t
(zerop 1) ; => nil
(plusp 1) ; => t
(plusp -1) ; => nil
(plusp 0) ; => nil
(minusp -1) ; => t
(minusp 1) ; => nil
(minusp 0) ; => nil
  • <, <=, =, >=, >, /=:
(< 1 2 3) ; => t
(< 1 3 1) ; => nil
(= 1 2 3) ; => nil
(/= 1 2 3) ; => t
  • evenp, oddp:
(evenp 1) ; => nil
(oddp 1) ; => t
Boolean expressions
  • not, null:
(not nil) ; => t
(not ()) ; => t
(not t) ; => nil
(not 1) ; => nil
(null nil) ; => t
(null ()) ; => t
(null '(1 2 3)) ; => nil
(null 1) ; => nil
  • and, or:
(and t nil) ; => nil
(and t t) ; => t
(and 1 2 3) ; => 3
(and 1 nil) ; => nil
(or t nil) ; => t
(or nil nil) ; => nil
(or 1 2 nil) ; => 1
(or nil 1 nil) ; => 1
Type predicates
  • atomp:
(atom 'a) ; => t
(atom "a") ; => t
(atom 1) ; => t
(atom nil) ; => t
(atom '(1 2)) ; => nil
(atom ()) ; => t
  • listp:
(listp ()) ; => t
(listp '(1 2)) ; => t
(listp t) ; => nil
(listp nil) ; => t
  • symbolp:
(symbolp t) ; => t
(symbolp nil) ; => t
(symbolp "a") ; => nil
(symbolp 'a) ; => t
(symbolp ()) ; => nil
  • numberp, integerp, realp, rationalp, floatp, complexp;
Equality predicates
  • eq, eql, equal, equalp
(eq 1 1) ; => t
(eq 'a 'a) ; => t

(eq 1.0 1.0) ; => nil
(eq "a" "a") ; => nil
(eq 1 1.0) ; => nil
(eq "a" "A") ; => nil
(eq "a" 'a) ; => nil

(eql 1.0 1.0) ; => t
(eql "a" "a") ; => nil
(eql 1 1.0) ; => nil
(eql "a" "A") ; => nil
(eql "a" 'a) ; => nil

(equal 1.0 1.0) ; => t
(equal "a" "a") ; => t
(equal 1 1.0) ; => nil
(equal "a" "A") ; => nil
(equal "a" 'a) ; => nil

(equalp 1.0 1.0) ; => t
(equalp "a" "a") ; => t
(equalp 1 1.0) ; => t
(equalp "a" "A") ; => t
(equalp "a" 'a) ; => nil

The current page is a simplified view of the page Laboratory 1 from the previous years, which in turn is based on Laboratory 1 by Cornel Izbasa;