Không gian vector
Một không gian vector trên trường số F là một tập V kèm theo phép toán hai ngôi. Các phần tử trong V gọi là những vector, các phần tử trong F gọi là vô hướng. Phép toán đầu tiên là phép cộng vector, cộng 2 vector v và w cho ra một vector thứ 3 v + w. Phép toán thứ hai là phép nhân một vô hướng a với bất kỳ vector v nào và kết quả cho ra một vector mới av, phép toán này gọi là phép nhân vô hướng của v với a. Các phép nhân và cộng trong không gian vector phải thỏa mãn các tiên đề sau,[1] với u, v và w là các vector trong tập V, a và b là các vô hướng trong trường số F.
Tiên đề | Công thức biểu diễn |
Tính kết hợp của phép cộng | u + (v + w) = (u + v) + w |
Tính giao hoán của phép cộng | u + v = v + u |
Phần tử trung hòa của phép cộng | Tồn tại một phần tử 0 ∈ V, sao cho v + 0 = v với mọi v ∈ V. |
Phần tử nghịch đảo của phép cộng | Với mọi v ∈ V, tồn tại một phần tử −v ∈ V, gọi là phần tử nghịch đảo của v, sao cho v + (−v) = 0 |
Tính phân phối của một phép nhân vô hướng với một phép cộng vector | a(u + v) = au + av |
Tính phân phối của một phép nhân vô hướng với một phép cộng vô hướng | (a + b)v = av + bv |
Phép nhân vô hướng kết hợp với phép nhân trong trường các số vô hướng | a(bv) = (ab)v Tiên đề này không khẳng định về tính kết hợp của một toán tử, bởi vì có hai toán tử đang nói đến, nhân vô hướng: bv; và nhân trên trường số: ab. |
Phần tử đơn vị trong phép nhân vô hướng | 1v = v, với 1 là phần tử đơn vị của phép nhân trong trường số F. |
Ánh xạ tuyến tính
[edit]Cho 2 không gian vector V và W trên trường F, một biến đổi tuyến tính (còn gọi là ánh xạ tuyến tính) là một ánh xạ:
có tính kết hợp với phép cộng và phép nhân vô hướng:
với mọi vector u,v ∈ V và một vô hướng a ∈ F.