Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Community Portal
Babel user information
Root Category
Recent changes
States of WikiU
Help
Search
Search
English
Appearance
Donate
Create account
Log in
Personal tools
Donate
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Contents
move to sidebar
hide
Beginning
1
Ở trạng thái cân bằng
2
Ở trạng thái đồng bộ
Toggle the table of contents
Mạch điện RLC
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Print/export
Create a book
Download as PDF
Printable version
Appearance
move to sidebar
hide
From Wikiversity
Ở trạng thái cân bằng
[
edit
]
Với R khác không
v
L
+
v
c
+
v
R
=
0
{\displaystyle v_{L}+v_{c}+v_{R}=0}
L
d
d
t
i
+
1
C
∫
i
d
t
+
i
R
=
0
{\displaystyle L{\frac {d}{dt}}i+{\frac {1}{C}}\int idt+iR=0}
d
2
d
t
2
i
+
R
L
d
d
t
i
+
1
L
C
i
=
0
{\displaystyle {\frac {d^{2}}{dt^{2}}}i+{\frac {R}{L}}{\frac {d}{dt}}i+{\frac {1}{LC}}i=0}
d
2
d
t
2
i
=
−
2
α
d
d
t
i
−
β
i
{\displaystyle {\frac {d^{2}}{dt^{2}}}i=-2\alpha {\frac {d}{dt}}i-\beta i}
Phương trình trên có nghiệm
Một nghiệm số thực khi
α
=
β
{\displaystyle \alpha =\beta }
.
i
=
A
e
−
α
t
=
A
(
α
)
{\displaystyle i=Ae^{-\alpha t}=A(\alpha )}
Hai nghiệm số thực khi
α
>
β
{\displaystyle \alpha >\beta }
.
i
=
A
e
(
−
α
±
λ
)
t
=
A
e
−
α
t
e
λ
t
+
A
e
−
α
t
e
−
λ
t
=
A
(
α
)
e
λ
t
+
A
(
α
)
e
−
λ
t
{\displaystyle i=Ae^{(-\alpha \pm \lambda )t}=Ae^{-\alpha t}e^{\lambda t}+Ae^{-\alpha t}e^{-\lambda t}=A(\alpha )e^{\lambda t}+A(\alpha )e^{-\lambda t}}
Hai nghiệm số phức khi
α
<
β
{\displaystyle \alpha <\beta }
.
i
=
A
e
(
−
α
±
j
ω
)
t
=
A
e
−
α
t
e
±
j
ω
t
=
A
(
α
)
sin
ω
t
{\displaystyle i=Ae^{(-\alpha \pm j\omega )t}=Ae^{-\alpha t}e^{\pm j\omega t}=A(\alpha )\sin \omega t}
Với
β
=
1
T
=
1
L
C
{\displaystyle \beta ={\frac {1}{T}}={\frac {1}{LC}}}
α
=
β
γ
=
R
2
L
{\displaystyle \alpha =\beta \gamma ={\frac {R}{2L}}}
T
=
L
C
{\displaystyle T=LC}
γ
=
R
C
{\displaystyle \gamma =RC}
A
(
α
)
=
A
e
−
α
t
{\displaystyle A(\alpha )=Ae^{-\alpha t}}
ω
=
β
−
α
{\displaystyle \omega ={\sqrt {\beta -\alpha }}}
λ
=
α
−
β
{\displaystyle \lambda ={\sqrt {\alpha -\beta }}}
Với R =0
i
″
(
t
)
=
−
β
i
(
t
)
{\displaystyle i^{''}(t)=-\beta i(t)}
i
(
t
)
=
A
e
±
j
ω
t
=
A
s
i
n
ω
t
{\displaystyle i(t)=Ae^{\pm j\omega t}=Asin\omega t}
ω
=
β
{\displaystyle \omega ={\sqrt {\beta }}}
Với R,C =0
∇
E
(
t
)
=
−
ω
E
(
t
)
{\displaystyle \nabla E(t)=-\omega E(t)}
∇
B
(
t
)
=
−
ω
B
(
t
)
{\displaystyle \nabla B(t)=-\omega B(t)}
E
(
t
)
=
A
sin
ω
t
{\displaystyle E(t)=A\sin \omega t}
B
(
t
)
=
A
sin
ω
t
{\displaystyle B(t)=A\sin \omega t}
ω
=
λ
f
=
1
T
=
C
{\displaystyle \omega =\lambda f={\sqrt {\frac {1}{T}}}=C}
T
=
μ
ϵ
{\displaystyle T=\mu \epsilon }
Với L =0
v
C
+
v
R
=
0
{\displaystyle v_{C}+v_{R}=0}
C
d
d
t
v
(
t
)
+
v
(
t
)
R
=
0
{\displaystyle C{\frac {d}{dt}}v(t)+{\frac {v(t)}{R}}=0}
d
d
t
v
(
t
)
=
−
1
T
v
(
t
)
{\displaystyle {\frac {d}{dt}}v(t)=-{\frac {1}{T}}v(t)}
v
(
t
)
=
A
e
−
t
T
{\displaystyle v(t)=Ae^{-{\frac {t}{T}}}}
T
=
R
C
{\displaystyle T=RC}
Với C =0
v
L
+
v
R
=
0
{\displaystyle v_{L}+v_{R}=0}
L
d
d
t
i
(
t
)
+
i
(
t
)
R
=
0
{\displaystyle L{\frac {d}{dt}}i(t)+i(t)R=0}
d
d
t
i
(
t
)
=
−
1
T
i
(
t
)
{\displaystyle {\frac {d}{dt}}i(t)=-{\frac {1}{T}}i(t)}
i
(
t
)
=
A
e
−
t
T
{\displaystyle i(t)=Ae^{-{\frac {t}{T}}}}
T
=
L
R
{\displaystyle T={\frac {L}{R}}}
Ở trạng thái đồng bộ
[
edit
]
Với R khác không
Z
C
=
−
Z
L
{\displaystyle Z_{C}=-Z_{L}}
.
Z
t
=
R
{\displaystyle Z_{t}=R}
,
i
(
ω
=
0
)
=
0
{\displaystyle i(\omega =0)=0}
i
(
ω
=
ω
o
)
=
v
R
{\displaystyle i(\omega =\omega _{o})={\frac {v}{R}}}
i
(
ω
=
0
)
=
0
{\displaystyle i(\omega =0)=0}
ω
o
=
±
j
1
T
o
{\displaystyle \omega _{o}=\pm j{\sqrt {\frac {1}{T_{o}}}}}
T
o
=
L
C
{\displaystyle T_{o}=LC}
Với R =0
Z
C
=
−
Z
L
{\displaystyle Z_{C}=-Z_{L}}
.
V
C
=
−
V
L
{\displaystyle V_{C}=-V_{L}}
,
i
(
t
)
=
A
sin
(
ω
o
t
+
2
π
)
−
A
sin
(
ω
o
t
−
2
π
)
{\displaystyle i(t)=A\sin(\omega _{o}t+2\pi )-A\sin(\omega _{o}t-2\pi )}
ω
o
=
±
j
1
T
o
{\displaystyle \omega _{o}=\pm j{\sqrt {\frac {1}{T_{o}}}}}
T
o
=
L
C
{\displaystyle T_{o}=LC}
Với R,C =0
∇
E
(
t
)
=
−
ω
o
E
(
t
)
{\displaystyle \nabla E(t)=-\omega _{o}E(t)}
∇
B
(
t
)
=
−
ω
o
B
(
t
)
{\displaystyle \nabla B(t)=-\omega _{o}B(t)}
E
(
t
)
=
A
sin
ω
o
t
{\displaystyle E(t)=A\sin \omega _{o}t}
B
(
t
)
=
A
sin
ω
o
t
{\displaystyle B(t)=A\sin \omega _{o}t}
ω
o
=
λ
o
f
o
=
1
T
o
=
C
{\displaystyle \omega _{o}=\lambda _{o}f_{o}={\sqrt {\frac {1}{T_{o}}}}=C}
T
o
=
μ
o
ϵ
o
{\displaystyle T_{o}=\mu _{o}\epsilon _{o}}
Category
:
Mạch điện điện trở
Hidden category:
VI