Jump to content

Course:ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ/ਸੰਖੇਪ ਸਾਰਾਂਸ਼

From Wikiversity

ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਦਾ ਅਧਿਐਨ ਆਮਤੌਰ ਤੇ ਨਿਊਟਨ ਦੇ ਨਿਯਮਾਂ ਤੋਂ ਸ਼ੁਰੂ ਹੁੰਦਾ ਹੈ ਜਿਹਨਾਂ ਵਿੱਚੋਂ

“ਬਲ = ਪੁੰਜ × ਪ੍ਰਵੇਗ” (ਫੋਰਸ = ਮਾਸ × ਐਕਸਲੇਰਸ਼ਨ)

ਸਮੀਕਰਨ ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਇਹ ਕਹਿ ਕੇ ਰਟਾਈ ਜਾਂਦੀ ਹੈ ਕਿ ਇਹ ਨਿਊਟਨ ਦਾ ਗਤੀ ਦਾ ਅਜਿਹਾ ਨਿਯਮ ਹੈ ਜੋ ਪ੍ਰਯੋਗਾਂ ਰਾਹੀਂ ਸਿੱਧ ਕੀਤਾ ਗਿਆ ਹੈ। ਪ੍ਰਯੋਗਾਂ ਰਾਹੀਂ ਸਿੱਧ ਕੀਤੀ ਜਾਣ ਵਾਲ਼ੀ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੀ ਸਮੀਕਰਨ ਬਹੁਤ ਭਰੋਸੇਮੰਦ ਅਤੇ ਵਿਗਿਆਨਿਕ ਸਮੀਕਰਨ ਕਹੀ ਜਾ ਸਕਦੀ ਹੈ, ਪਰ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਵਿੱਚ ਸਮੀਕਰਨਾਂ ਦੀ ਕਹਾਣੀ ਪ੍ਰਯੋਗਾਂ ਦੀ ਜਗਹ ਸ਼ਬਦਾਂ ਨਾਲ ਹੀ ਬਣਾ ਲਈ ਜਾਂਦੀ ਹੈ। ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਰਾਹੀਂ ਬਣੀ ਕਿਸੇ ਸਮੀਕਰਨ ਨੂੰ ਪ੍ਰਯੋਗਾਂ ਰਾਹੀਂ ਸਾਬਤ ਕਰਨ ਤੇ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਸ਼ੁੱਧਤਾ ਪਰਖੀ ਜਾ ਸਕਦੀ ਹੈ ਪਰ ਸਿਰਫ ਪ੍ਰਯੋਗਾਂ ਦੇ ਅਧਾਰ ਤੇ ਹੀ ਕਿਸੇ ਸਮੀਕਰਨ ਨੂੰ ਸੱਚ ਮੰਨ ਲੈਣਾ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਮੁਤਾਬਿਕ ਵਿਗਿਆਨਿਕ ਤੌਰ ਤੇ ਅਧੂਰੀ ਜਾਣਕਾਰੀ ਹੀ ਸਮਝਿਆ ਜਾਂਦਾ ਹੈ। ਜਦੋਂ ਤੱਕ ਕਿਸੇ ਘਟਨਾਕ੍ਰਮ ਜਾਂ ਸਮੀਕਰਨ ਦੇ ਮੂਲ ਕਾਰਨ ਦੇ ਸੱਚ ਤੱਕ ਨੂੰ ਨਹੀਂ ਜਾਣ ਲਿਆ ਜਾਂਦਾ, ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੇ ਔਜ਼ਾਰ ਅੱਗੇ ਤੋਂ ਅੱਗੇ ਸੱਚਾਈ ਪਤਾ ਲਗਾਉਣ ਤੋਂ ਨਹੀਂ ਰੁਕਦੇ । ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਰਾਹੀਂ ਸਾਡੇ ਆਮ ਜਾਣੇ ਜਾਂਦੇ ਗਿਣਤੀ ਵਾਲ਼ੇ ਸਿਸਟਮ

0, 1, 2, 3, …

ਨੂੰ ਵੀ ਵਿਓਂਤਬੰਦ ਕਰਕੇ ਇੱਕ ਸ਼ਾਨਦਾਰ ਨੰਬਰ ਓਪਰੇਟਰ ਰਾਹੀਂ ਦਿਖਾਇਆ ਜਾਂਦਾ ਹੈ ਜੋ ਨਸ਼ਟ ਕਰਨ ਵਾਲੇ ਅਤੇ ਰਚਨਾ ਕਰਨ ਵਾਲ਼ੇ ਦੋ ਓਪਰੇਟਰਾਂ ਦੇ ਗੁਣਨਫਲ ਨਾਲ ਸਬੰਧਤ ਹੁੰਦਾ ਹੈ।

ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦਾ ਜਿਆਦਾਤਰ ਅਧਿਐਨ ਸ਼ਬਦਾਂ ਸਹਾਰੇ ਹੀ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਪ੍ਰਯੋਗਾਂ ਮੁਤਾਬਿਕ ਸਾਬਤ ਕਰਨ ਦੀ ਜਰੂਰਤ ਇੰਨੀ ਜਿਆਦਾ ਨਹੀਂ ਹੁੰਦੀ । ਵਾਸਤਵਿਕ ਸੰਸਾਰ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਮੁਤਾਬਿਕ ਹੀ ਚਲਦਾ ਹੈ, ਪਰ ਇਸ ਕਲਾਸੀਕਲ ਭੌਤਿਕ ਵਿਗਿਆਨ ਨੂੰ ਸ਼ਬਦਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦ ਕਰਨ ਲਈ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਇੱਕ ਸੁੰਦਰ ਔਜ਼ਾਰ ਦੇ ਰੂਪ ਵਿੱਚ ਭੂਮਿਕਾ ਅਦਾ ਕਰਦਾ ਹੈ। “ਕੁਆਂਟਮ” ਸ਼ਬਦ ਸੰਪੂਰਣ ਇਕਾਈ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ, ਯਾਨਿ ਕਿ, ਵਾਸਤਵਿਕ ਰੂਪ ਵਿੱਚ ਪ੍ਰਗਟ ਹੋਣ ਵਾਲ਼ੀਆਂ ਚੀਜ਼ਾਂ ਦੀ ਇੱਕ ਬੰਨੀ ਹੋਈ ਮਾਤਰਾ ਵੱਲ, ਜਿਸ ਤੋਂ ਬਿਨਾਂ ਕੋਈ ਹਕੀਕਤ ਪ੍ਰਗਟ ਨਹੀਂ ਹੁੰਦੀ । ਭਵਾਂ ਕੁਆਂਟਮ ਸ਼ਬਦ ਨੂੰ ਪ੍ਰਕਾਸ਼ ਦਾ ਇੱਕ ਐਨਰਜੀ ਕੁਆਂਟਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਪਰ ਇਸਦੇ ਗਹਿਰੇ ਅਰਥ ਹੀ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਦੀ ਬੁਨਿਆਦ ਹਨ ਜੋ ਫਰੀਕੁਐਂਸੀ ਸ਼ਬਦ ਨਾਲ ਸਿੱਧੇ ਤੌਰ ਤੇ ਸਬੰਧਤ ਹੈ। ਪ੍ਰਯੋਗਾਂ ਰਾਹੀਂ ਇਹ ਸਿੱਧ ਹੁੰਦਾ ਸੀ ਕਿ ਊਰਜਾ ਕੁੱਝ ਬੰਨੇ ਹੋਏ ਪੈਕਟਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਹੀ ਕੰਮ ਕਰਦੀ (ਸੰਚਾਰਿਤ ਹੁੰਦੀ) ਹੈ, ਜੋ ਕਿਸੇ ਸਿਸਟਮ ਦੀ ਫਰੀਕੁਐਂਸੀ ਦੇ ਗੁਣਨਫਲ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ। ਫਰੀਕੁਐਂਸੀ ਆਮਤੌਰ ਤੇ ਗਣਿਤ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਇੱਕ ਇਕਾਈ ਵਕਤ ਵਿੱਚ ਸੰਪੂਰਣ ਤਰੰਗ ਲੰਬਾਈ ਦੇ ਕਿਸੇ ਖਾਸ ਬਿੰਦੂ ਵਿੱਚੋਂ ਗੁਜ਼ਰਨ ਦੇ ਚੱਕਰਾਂ ਦੀ ਗਿਣਤੀ ਨੂੰ ਕਹਿੰਦੇ ਹਨ। ਜਾਂ ਉਲਟ ਰੂਪ ਵਿੱਚ ਕਹੀਏ ਤਾਂ ਇੱਕ ਤਰੰਗ ਲੰਬਾਈ ਦੁਆਰਾ ਕਿਸੇ ਬਿੰਦੂ ਵਿੱਚੋਂ ਇੱਕ ਪੂਰਾ ਚੱਕਰ ਲਗਾਉਂਦੇ ਹੋਏ ਗੁਜ਼ਰਨ ਲਈ ਲੱਗੇ ਵਕਤ ਅੰਤਰਾਲ ਦੀ ਉਲਟੀ ਮਾਤਰਾ ਨੂੰ ਫਰੀਕੁਐਂਸੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਫਰੀਕੁਐਂਸੀ ਦਾ ਵਾਸਤਵਿਕਤਾ ਦੇ ਪ੍ਰਗਟ ਹੋਣ ਨਾਲ ਸਿੱਧਾ ਸਬੰਧ ਹੈ। ਸੰਸਾਰ ਵਿੱਚ ਵਾਪਰਦਾ ਵਰਤਾਰਾ ਅਨੰਤ ਕਾਲ ਤੋਂ ਵਾਪਰਦਾ ਹੋ ਸਕਦਾ ਹੈ। ਸਾਰੇ ਦੇ ਸਾਰੇ ਵਰਤਾਰੇ ਦਾ ਅਧਿਐਨ ਕਰਨ ਲਈ ਅਨੰਤ ਵਕਤ ਨੂੰ ਲੈ ਕੇ ਕੀਤਾ ਜਾਣ ਵਾਲਾ ਅਧਿਐਨ ਮੁਸ਼ਕਿਲ ਹੋ ਸਕਦਾ ਹੈ, ਇਸਲਈ ਸੰਪੂਰਣ ਅਨੰਤ ਕਾਲ ਨਾਲ਼ੋਂ ਉਸਦਾ ਇੱਕ ਖਾਸ ਅਜਿਹਾ ਹਿੱਸਾ ਲੈ ਕੇ ਅਧਿਐਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜੋ ਵਾਰ ਵਾਰ ਰਪੀਟ ਹੁੰਦਾ ਹੋਵੇ ।

ਜਦੋਂ ਕਿਸੇ ਚੱਕਰਾਕਾਰ ਰਸਤੇ ਉੱਤੇ ਕਿਸੇ ਸਿਸਟਮ ਦੀ ਗਤੀ ਜਾਂ ਪੁਜੀਸ਼ਨ ਆਦਿ ਦਾ ਅਧਿਐਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਅਜਿਹੇ ਰਸਤੇ ਦੀ ਇੱਕ ਖਾਸ ਵਿਸ਼ੇਸ਼ਤਾ ਇਹ ਹੁੰਦੀ ਹੈ ਕਿ ਕਿਸੇ ਖਾਸ ਬਿੰਦੂ ਤੋਂ ਸ਼ੁਰੂ ਕਰਕੇ ਹੋਣ ਵਾਲੀ ਕਿਸੇ ਸਿਸਟਮ ਦੀ ਪੁਜੀਸ਼ਨ ਪੂਰਾ ਚੱਕਰ ਲਗਾ ਕੇ ਮੁੜ ਓਸੇ ਬਿੰਦੂ ਉੱਤੇ ਹੀ ਪਰਤ ਆਉਂਦੀ ਹੈ। ਜਿੰਨੀ ਤੇਜ਼ ਕਿਸੇ ਸਿਸਟਮ ਦੀ ਗਤੀ ਹੋਵੇਗੀ, ਉੰਨੀ ਹੀ ਉਸਦੀ ਫਰੀਕੁਐਂਸੀ ਜਿਆਦਾ ਹੋਵੇਗੀ ਅਤੇ ਉਸਦੇ ਨਾਲ ਹੀ ਉਸਦੀ ਉਰਜਾ ਵੀ ਜਿਆਦਾ ਹੋਵੇਗੀ। ਅਰਥਾਤ ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਅਜਿਹਾ ਸਿਸਟਮ ਬਹੁਤ ਘੱਟ ਤਰੰਗ ਲੰਬਾਈ ਨਾਲ ਗਤੀ ਕਰਦਾ ਹੈ। ਕਿਸੇ ਚੱਕਰਾਕਾਰ ਪਥ ਉੱਤੇ ਗਤੀ ਕਰਨ ਲਈ ਵੱਧ ਤੋਂ ਵੱਧ ਤਰੰਗ ਲੰਬਾਈ ਪੂਰੇ ਇੱਕ ਚੱਕਰ ਜਿੰਨੀ ਹੋ ਸਕਦੀ ਹੈ, ਅਤੇ ਉਸਤੋਂ ਬਾਦ ਅੱਧੇ ਚੱਕਰ ਜਿੰਨੀ ਅਤੇ ਇਸੇ ਤਰਾਂ ਹੋਰ ਅੱਗੇ ਇੱਕ ਤਿਹਾਈ, ਇੱਕ-ਚੌਥਾਈ ਚੱਕਰ ਜਿੰਨੀ ਆਦਿ…। ਜਦੋਂ ਇੱਕ ਪੂਰੇ ਚੱਕਰ ਜਿੰਨੀ ਵੱਡੀ ਤਰੰਗ ਲੰਬਾਈ ਹੋਵੇ ਤਾਂ ਫਰੀਕੁਐਂਸੀ 1 ਹੀ ਰਹਿੰਦੀ ਹੈ, ਅਤੇ ਇਸਤੋਂ ਬਾਦ ਅੱਧੇ ਚੱਕਰ ਜਿੰਨੀ ਤਰੰਗ ਲੰਬਾਈ ਵਾਸਤੇ ਫਰੀਕੁਐਂਸੀ ਦੁੱਗਣੀ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਫੇਰ ਤਿੱਗਣੀ, ਚੌਗੁਣੀ ਆਦਿ..। ਹਰੇਕ ਫਰੀਕੁਐਂਸੀ ਦੀ ਮਾਤਰਾ ਵੱਖਰੀਆਂ ਤਰੰਗ-ਲੰਬਾਈਆਂ ਨਾਲ ਸਬੰਧ ਰੱਖਦੀ ਹੈ ਅਤੇ ਕੁੱਲ ਵੱਖਰੇ ਤਰੰਗ-ਫੰਕਸ਼ਨ ਨਾਲ ਸਬੰਧ ਰੱਖਦੀ ਹੈ ਜਿਸਦੀ ਗਤੀ ਵੱਖਰੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਵੱਖਰੀ ਗਤੀ ਕਾਰਨ ਵੱਖਰਾ ਮੋਮੈਂਟਮ ਹੁੰਦਾ ਹੈ। ਵੱਖਰੇ-ਵੱਖਰੇ ਮੋਮੈਂਟਮ ਵਾਲੇ ਵੇਵ ਫੰਕਸ਼ਨਾਂ ਨੂੰ ਵੇਵ-ਨੰਬਰ ਜਾਂ ਤਰੰਗ-ਸੰਖਿਆ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਜਿਸਦੇ ਪਲੈਂਕ ਕੌਂਸਟੈਂਟ ਨਾਲ ਗੁਣਨਫਲ ਨੂੰ ਮੋਮੈਂਟਮ ਬਰਾਬਰ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ।

ਵੇਵ ਫੰਕਸ਼ਨ ਨੂੰ ਆਮਤੌਰ ਤੇ ਛੋਟੇ ਗਰੀਕ ਅੱਖਰ ψ (ਉੱਚਾਰਣ: ਸਾਈ) ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਫੀਲਡ ਓਪਰੇਟਰ ਨੂੰ ਵੱਡੇ ਗਰੀਕ ਅੱਖਰ Ψ ਨਾਲ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ। ਫੀਲਡ ਓਪਰੇਟਰ ਦੋ ਰੂਪਾਂ ਵਿੱਚ ਲਿਖੇ ਜਾਂਦੇ ਹਨ, Ψ ਅਤੇ Ψ† (ਉੱਚਾਰਣ : ਸਾਈ ਡੈਗਰ), ਜਿਹਨਾਂ ਵਿੱਚੋਂ “ਸਾਈ ਡੈਗਰ” ਰਚਨਾਤਮਕ ਫੀਲਡ ਓਪਰੇਟਰ ਦੇ ਤੌਰ ਤੇ ਪੁਲਾੜ ਵਿੱਚੋਂ ਕਣਾਂ ਨੂੰ ਪ੍ਰਗਟ ਕਰਨ ਦਾ ਕੰਮ ਕਰਦਾ ਹੈ ਅਤੇ “ਸਾਈ” ਅਲੋਪਕਾਰੀ ਫੀਲਡ ਓਪਰੇਟਰ ਦੇ ਤੌਰ ਤੇ ਕਣਾਂ ਨੂੰ ਪੁਲਾੜ ਵਿੱਚੋਂ ਅਲੋਪ ਕਰਦਾ ਹੈ।

ਆਓ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਦਾ ਵਿਸਥਾਰ ਨਾਲ ਅਧਿਐਨ ਕਰੀਏ!